Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0297015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446822

RESUMO

Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.


Assuntos
Malus , Humanos , Malus/genética , Frutas/genética , Transcriptoma , Projetos Piloto , Perfilação da Expressão Gênica
2.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190814

RESUMO

Cultivated pear consists of several Pyrus species with Pyrus communis (European pear) representing a large fraction of worldwide production. As a relatively recently domesticated crop and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative genomics within Rosaceae promises greater understanding of evolution within this economically important family. Here, we generate a fully phased chromosome-scale genome assembly of P. communis 'd'Anjou.' Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved into the expected 17 chromosomes, with each haplotype totaling nearly 540 Megabases and a contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other and to the Malus domestica 'Honeycrisp' apple genome. Nearly 45,000 genes were annotated in each haplotype, over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known whole-genome duplication shared between apple and pear, and we estimate 57% of d'Anjou genes are retained in duplicate derived from this event. This genome highlights the value of generating phased diploid assemblies for recovering the full allelic complement in highly heterozygous crop species.


Assuntos
Malus , Pyrus , Pyrus/genética , Genoma de Planta , Melhoramento Vegetal , Malus/genética , Cromossomos
3.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259608

RESUMO

Apples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted key biochemical processes involved in sun injury, such as the phenylpropanoid and reactive oxygen species (ROS) pathways, demonstrating both enzyme activities and expression of related genes in response to sunburn conditions. Most previous studies have focused on at-harvest activity of a small number of genes in response to heat stress. Thus, it remains unclear how stress events earlier in the season affect physiology and gene expression. Here, we applied heat stress to mid-season apples in the field and collected tissue along a time course-24, 48, and 72 h following a heat stimulus-to investigate dynamic gene expression changes using a transcriptomic lens. We found a relatively small number of differentially expressed genes (DEGs) and enriched functional terms in response to heat treatments. Only a few of these belonged to pathways previously described to be involved in sunburn, such as the AsA-GSH pathway, while most DEGs had not yet been implicated in sunburn or heat stress in pome fruit.


Assuntos
Malus , Queimadura Solar , Malus/genética , Frutas , Transcriptoma , Queimadura Solar/genética , Queimadura Solar/metabolismo , Estações do Ano , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
4.
GigaByte ; 2022: gigabyte69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824509

RESUMO

The apple cultivar 'Honeycrisp' has superior fruit quality traits, cold hardiness, and disease resistance, making it a popular breeding parent. However, it suffers from several physiological disorders, production, and postharvest issues. Despite several available apple genome sequences, understanding of the genetic mechanisms underlying cultivar-specific traits remains lacking. Here, we present a highly contiguous, fully phased, chromosome-level genome of 'Honeycrisp' apples, using PacBio HiFi, Omni-C, and Illumina sequencing platforms, with two assembled haplomes of 674 Mbp and 660 Mbp, and contig N50 values of 32.8 Mbp and 31.6 Mbp, respectively. Overall, 47,563 and 48,655 protein-coding genes were annotated from each haplome, capturing 96.8-97.4% complete BUSCOs in the eudicot database. Gene family analysis reveals most 'Honeycrisp' genes are assigned into orthogroups shared with other genomes, with 121 'Honeycrisp'-specific orthogroups. This resource is valuable for understanding the genetic basis of important traits in apples and related Rosaceae species to enhance breeding efforts.

5.
Front Plant Sci ; 12: 609684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220875

RESUMO

Estimating maturity in pome fruits is a critical task that directs virtually all postharvest supply chain decisions. This is especially important for European pear (Pyrus communis) cultivars because losses due to spoilage and senescence must be minimized while ensuring proper ripening capacity is achieved (in part by satisfying a fruit chilling requirement). Reliable methods are lacking for accurate estimation of pear fruit maturity, and because ripening is maturity dependent it makes predicting ripening capacity a challenge. In this study of the European pear cultivar 'd'Anjou', we sorted fruit at harvest based upon on-tree fruit position to build contrasts of maturity. Our sorting scheme showed clear contrasts of maturity between canopy positions, yet there was substantial overlap in the distribution of values for the index of absorbance difference (I AD ), a non-destructive spectroscopic measurement that has been used as a proxy for pome fruit maturity. This presented an opportunity to explore a contrast of maturity that was more subtle than I AD could differentiate, and thus guided our subsequent transcriptome analysis of tissue samples taken at harvest and during storage. Using a novel approach that tests for condition-specific differences of co-expressed genes, we discovered genes with a phased character that mirrored our sorting scheme. The expression patterns of these genes are associated with fruit quality and ripening differences across the experiment. Functional profiles of these co-expressed genes are concordant with previous findings, and also offer new clues, and thus hypotheses, about genes involved in pear fruit quality, maturity, and ripening. This work may lead to new tools for enhanced postharvest management based on activity of gene co-expression modules, rather than individual genes. Further, our results indicate that modules may have utility within specific windows of time during postharvest management of 'd'Anjou' pear.

6.
Microorganisms ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917441

RESUMO

Brassicaceae seed meal (SM) soil amendment has been utilized as an effective strategy to control the biological complex of organisms, which includes oomycetes, fungi, and parasitic nematodes, that incites the phenomenon termed apple replant disease. Soil-borne disease control attained in response to Brassicaceae SM amendment is reliant on multiple chemical and biological attributes, including specific SM-generated modifications to the soil/rhizosphere microbiome. In this study, we conducted a comparative analyses of apple root gene expression as influenced by rootstock genotype combined with a seed meal (SM) soil amendment. Apple replant disease (ARD) susceptible (M.26) and tolerant (G.210) rootstocks cultivated in SM-amended soil exhibited differential gene expression relative to corresponding non-treated control (NTC) orchard soil. The temporal dynamics of gene expression indicated that the SM-amended soil system altered the trajectory of the root transcriptome in a genotype-specific manner. In both genotypes, the expression of genes related to plant defense and hormone signaling were altered in SM-amended soil, suggesting SM-responsive phytohormone regulation. Altered gene expression was temporally associated with changes in rhizosphere microbiome density and composition in the SM-treated soil. Gene expression analysis across the two rootstocks cultivated in the pathogen-infested NTC soil showed genotype-specific responses indicative of different defensive strategies. These results are consistent with previously described resistance mechanisms of ARD "tolerant" rootstock cultivars and also add to our understanding of the multiple mechanisms by which SM soil amendment and the resulting rhizosphere microbiome affect apple rootstock physiology. Future studies which assess transcriptomic and metagenomic data in parallel will be important for illuminating important connections between specific rhizosphere microbiota, gene-regulation, and plant health.

7.
J Phycol ; 56(1): 110-120, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31513719

RESUMO

We conducted a population genetic analysis of the stalked kelp, Pterygophora californica, in the Santa Barbara Channel, California, USA. The results were compared with previous work on the genetic differentiation of giant kelp, Macrocystis pyrifera, in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodged P. californica does not produce floating rafts with buoyant fertile sporophytes, commonly observed for M. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity in P. californica, supporting similar previous findings for M. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost's DEST , we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal of M. pyrifera at ecologically relevant spatial and temporal scales.


Assuntos
Kelp , Macrocystis , Ecossistema , Genética Populacional , Oceanografia
8.
Proc Biol Sci ; 286(1904): 20190943, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185858

RESUMO

Standing genetic variation is important for population persistence in extreme environmental conditions. While some species may have the capacity to adapt to predicted average future global change conditions, the ability to survive extreme events is largely unknown. We used single-generation selection experiments on hundreds of thousands of Strongylocentrotus purpuratus sea urchin larvae generated from wild-caught adults to identify adaptive genetic variation responsive to moderate (pH 8.0) and extreme (pH 7.5) low-pH conditions. Sequencing genomic DNA from pools of larvae, we identified consistent changes in allele frequencies across replicate cultures for each pH condition and observed increased linkage disequilibrium around selected loci, revealing selection on recombined standing genetic variation. We found that loci responding uniquely to either selection regime were at low starting allele frequencies while variants that responded to both pH conditions (11.6% of selected variants) started at high frequencies. Loci under selection performed functions related to energetics, pH tolerance, cell growth and actin/cytoskeleton dynamics. These results highlight that persistence in future conditions will require two classes of genetic variation: common, pH-responsive variants maintained by balancing selection in a heterogeneous environment, and rare variants, particularly for extreme conditions, that must be maintained by large population sizes.


Assuntos
Mudança Climática , Variação Genética , Strongylocentrotus purpuratus/genética , Animais , Conservação dos Recursos Naturais , Frequência do Gene , Concentração de Íons de Hidrogênio , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Seleção Genética , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Strongylocentrotus purpuratus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...